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SUMMARY

An extremal principle is formulated for the linear viscoelastic problem with general viscous kernel. This is an
extension of the classical total potential energy principle of the linear elasticity. Then a discretized
formulation in space and time is shown for frame structures, using finite element technique. Several
numerical examples, for two different kinds of viscoelastic materials, testify the accuracy and reliability of the
proposed method. The matrix conditioning indexes obtained are compared with those achieved by applying
the least square method.
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. 1. INTRODUCTION

The idea of substituting a given problem with one equivalent in variational form is certainly not
new. The interest for such a formulation is justified by the power of the so-called ‘direct methods’
of variational calculus. They are both worth a ‘qualitative’ study of the associated problems
(existence and uniqueness of the solution, regularity, etc.) and a ‘quantitative’ numerical study
(like for the development of finite element techniques). In addition, from a numerical point of
view, the value of the functional may be used as a measure of the convergence during the
integration and the evaluation of the error of the approximate solution.

Along this path of reasoning, since 1950s, a number of attempts have been made to reformulate
the viscoelastic problem in variational terms. Main contributions in the field exist, for example,
those by Biot,! Onat,> Gurtin,® Brilla,* Christensen,’ Rafalski,® 8 Reiss and Haug,® Huet,'®
leading to variational formulations of the viscoelastic problem for hereditary type materials or
under particular conditions, but not for general kernels.

In the present paper reference is made to the case of a non-homogeneous, non-isotropic
viscoelastic solid with general viscous kernel. After explaining the linear viscoelastic problem
(Section 2), an equivalent extremal formulation is shown (Section 3). The presented extremal
formulation derives, as a particular case, from the family of extremal principles proposed in'! on
the basis of Tonti’s general theory of variational formulation of non-linear problems.!? Later, by
using the finite element technique in space and the Ritz method in time, a discretized formulation,
limited to frame structures, is presented in Section 4.

Several numerical examples are also shown (Section 5). These testify the accuracy and
reliability of the method. The work is concluded with a critical discussion of numerical results by
referring to matrix conditioning indexes of linear system coefficients obtained by discretization
(Section 6).
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2. THE LINEAR VISCOELASTIC PROBLEM FORMULATION

2.1. The linear viscoelastic constitutive law

Let 0:;(x;t), &;(x;t), Rim(x;¢,7) be respectively the stress tensor, the strain tensor and the
relaxation kernel. A representation in direct form of the linear viscoelastic constitutive law is the
following (supposing o;;(x; t) = 0 and ¢;(x; t) = 0 for t < to): ‘

t

035(%; t) = Rijme(X; 2, o)ew (% to) + J Rijue(x; 1, 7) dee(x; 7) 1)

fo
where ¢ is the time variable (¢, <t < + o0)and t is the integration variable. The constitutive law
in inverse form is

t

&ij(X; t) = Dyue(X; 8, to)ome(X; to) + J\' D (x; ¢, T)dap(x; T) (2

to
where @, (x; £, 7) is the creep kernel. In (1) and (2) the time integrals are used in Stieltjes’s way.* It
is further supposed that the relaxation and creep kernels satisfy the following symmetries:

Rijmi(X; £,7) = Ryij(x; 8, 7) 3)
D (X 1,7) = Ppii(x; 8, 7) 4

For isotropic materials the 'viscous kernels depend on two time functions only. In this case one
obtains the following relaxation kernel:

Rijp(x; t,7) = 3[R (x; t,7) — Ry(x; t,7)]0:;0m
+3R;(x;t,7) [0indjx + dudjn ] (5)

where R, (x; t, ) is the shear relaxation function, R,(x; t, 7) the volumetric relaxation function and
d;; the Kronecker’s symbol.

In the following, we shall refer only to constitutive law (1). It is supposed that the instantaneous
relaxation kernel R (x; ,t) is positive definite, i.e.

Rijnic(X; £, )iy > 0 (6)

for every xeQ and t, <t < + o and for every non-vanishing double symmetric tensor y.

2.2. The linear viscoelastic problem

Consider a linear viscoelastic body, occupying a region Q of Euclidean tridimensional space
with boundary surface I, where strains and displacements are small. The body is subjected to

*The constitutive law is usually written in direct form as follows:

oy(t) = J' Rijn(t, 7) e (1)

but, for the hypothesis of vanishing stresses and strains for any t < t,, it becomes
t
70) = [ R, 1) den(0)
o-

Pointing out the elastic part in t = t,, we have (1). In the same way we obtain (2)
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a history of volume forces F;(x; t), to a history of boundary forces pi(x; t) acting on the loaded
region I, of the boundary, and to a history of imposed displacements #;(x; t) acting on the
constrained region I, (with I = [, uT,). The whole load history is supposed to be defined in the
given time range T (te T and T = [to, t,]).

When mentioning ‘viscoelastic problem’ we refer to the problem of the determination of the
viscoelastic response of the body (in terms of displacements u;(x; t), strains g;(x; t) and stresses
~ 0y(x; t)) under the above-mentioned actions, in every point x of the body and for every time
t within the T interval.

The general linear viscoelastic problem is described by the following equations:

0% 1) + Filx; 1) = 0 inQxT )
aij(x; t)n(x) = pi(x; 1) onT,xT ®)
&ij(x; 1) = é[“i/j(x; t) + uj(x; t)] inQxT 9
u;(x; t) = u(x; t) onI,xT (10)

0j(x; t) = Rijm(X; ¢, to)em(X; Lo)
t
+ J* Rij(x;t,7)depe(x; T)  in QxT (11)
to

where (-)/j = 0(+)/0x; and nj(x) is the outward unit vector normal to I" at point x.

Relations (7) and (8) represent the indefinite and boundary equilibrium equations, respectively.
Relations (9) and (10) represent the indefinite and boundary compatibility equations, respectively,
and relation (11) represents the constitutive law in direct form.

In the following, it is assumed that the problem (7)—(11) has unique solution. A unicity theorem
can be found in Reference 13. In this paper, the existence of the viscoelastic solution will not be
discussed.

3. AN EXTREMAL PRINCIPLE

Let us consider the following problem that we will name ‘auxiliary’

i+ Fi=0 inQxT (12)
Gijn; = Pi on I,xT 13)
& = Yy + a5 inQxT (14)
4; = i; onT,xT (15)
61y = Rijm(X; to, to)em 0 Qx T (16)

where the fields of displacement ii;, of strain &; and of stress d;;, are the solution of the auxiliary
problem and where F; and p; are volume and surface forces, respectively, that depend on the
‘unknown actual displacement field u; in the following way:

t

. d R
Fiw)= — —[Rijhk(’C L, to)i (Uppe + i) + J:

(3x,~ t

1
Rime(x; t, T)_z‘d(uh/k + uk/h):l (17)

t

R 1
pi(u;) = n; [Rijhk(x; t fo)i (uppe + i) + ‘L

o

1
Rijnk(X; I,T)id(“h/k + uk/h)] (18)
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Let us now consider the functional:
1o ‘
Bt 05 0] = 3 f j Rim(%; tor )50 1)E8(x; 1)t
o ‘Q

—JIJ Fi(x; £)af (x; t)det—J f pi(x; )at (x; t)dIde (19)
o JQ to JIp c

under the conditions

e t) =3ufj+uf) inQxT (20)

uX(x;t) = i; onI,xT (21)
where ¢}, £ and 4} are the solution to the auxiliary problem (12)-(16) in which the loads F;and
p; are substituted with the loads F* and p}:

t

. 0 1
Fruh)= — E;[Rijhk("; L, tO)E(u:/k + ugm) + J:

J

oy

Rijm(X; t,T)E d (upp + u:/h)] (22)
o

* % | 1 * * | ! 1 * *
b (wi') = nj| Rijm(x;t, to)‘z'(uh/k + tign) + | | Rim(x; t,T)i d(uppi + i) (23)

. 1,
Proposition. Among the ‘admissible’ displacement fields uf (x; t), the solution of the viscoelastic

problem, in the given time interval T, is the field that makes the functional (19) minimum. The
‘admissible’ displacement fields are intended as those that respect the conditions (20) and (21).

Proof. Let us consider the difference AF between the functional, valued for an arbitrary admiss-
ible displacement field, and the functional valued for the actual displacements field.

AF = Fuf(x; )] — &Fluix; 1)] (24)

With the positions:
Al = af — o 25)
Aé,'j = é: - é,‘j (26)

relation (24) becomes

L5
A = % J J‘ A Rijuc(X; Lo, to) Aby dQ2dt
i Q

(o]

+J- J‘ é"jR,'jhk(X; to, to)Aéhdedt
to JQ :

L 1
to JOQ to e -

But, for the virtual work principle, the last three integrals vanish and therefore

1o
A = 3 J. f A& Rijui(x; to, to) Ady dQ dt (28)
1o JQ
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For the assumption (6), the elastic tensor Riju(X; to, to) is positive definite and thus we have

AF=0 (29)
AF =0 if and only if &= §; (30)
but relation (30) is valid if and only if
Fr=F (1)
bt = bi (32)

and this implies

2
axj

t

1
[Ri,-,.,‘(x; £, to) 5 (i + 1478) + J
t

o

1 .
Rijnc(X; t,t)id(u,.‘,,‘ + u,f},,)] +F,=0 inQxT (33)

1 ‘ 1
[Rijhk(x§ t, to)i(u:;k + ug) + J‘. Riju(x; t, T)'z'd(“:;k + ul‘:;h)]nj =p on,xT (34
o

which with the relations (20), (21) and the constitutive law give the whole equations set of the
given problem. In the above proof it has been demonstrated that a solution of problem (7)-(11) is
also a solution of the minimum problem. If the solution of the problem exists, this statement can
also be inverted. In other words, the solution of the minimum problem is also solution of the
problem (7)—(11). This is obvious for the supposed uniqueness of the solution and for the
convexity of the functional (19).

3.1. Particularization of the functional to plane frame structures

The classical hypothesis of Bernoulli-Navier and first-order beam theories are assumed.
Let the kinematic of a straight beam be defined by the vector u = [u v]T where u and v are the
x and y displacements of the centroid of the cross section at x (x is the longitudinal axis of the
beam). Denoting with N(x; t) and M(x; t) the axial force and the bending moment, the constitut-
ive viscoelastic law may be written
t
N(x; t) = R(x; t,t0) A(X)e(x; t) + J.* R(x; t, ©) A(x)de(x; 7) (35)
t,

o

t
M(x; t) = R(x; t, to) J (X)x(x; t) + J R(x;t,7) J(x)dx(x; 7) (36)
fo

where ¢ = Ju/dx and x = 82v/0x? are the axial strain and curvature, while A(x), J(x) and R(x; t, 1)
are the cross-section area, its moment of inertia and the relaxation function, respectively. Then,
denoting with p, g, the longitudinal and transversal components of the distributed load, the
general beam equilibrium equations become

0 ] Ju(x; t) J [ ) odu(x; 1)\ _
- (R(x, t,to) A(x) x ) ~ J;g <R(x, t, 1) A(x) T ) =p (37
62 az ; 62 t . azd ;
52 <R(x; t, to)J(x) —'(;—g—t—)> to L; <R(x; t, 1) J(x) —éﬁ—f—t)> =q (38)

When the structure is subdivided in a number n° of straight elements (the index e is added to any
quantity relevant to the generic element e) the extended total potential energy functional for the
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whole of the structure becomes. (in the following, the symbol # indicating all ‘admissible
quantities’ will be omitted for simplicity):

B n* 1 le o . aae(x;t) 2
st § 4] s 45)

2ne( . G el
+ J¢(x) <M>2] dxdr — f f pe(x; t)ac(x; t)dxdt
to o

ox?

- j“ fl- q°(x; t)6%(x; t)dx dt} 39
to JO

where ¢, 6° are the ‘fictitious’ elastic displacements for the element e. These ‘fictitious’ displace-
ments are the elastic response of the structure (with flexural stiffness R (x; t,, to)J¢(x) and with
axial stiffness R(x; to, to) A°(x)) due to the imposed displacements i/, 5%/, % (3 is the imposed
rotation at node j of element e) and to the longitudinal and transversal ‘fictitious’ loads p° and 4%

e _ 9 per. ey W)\ ot L 0dut(x;7)
b= — ax(R (x,t,to)A(x)T>—- = J;;R(x,t,r)A ()=, (40)
N N L) AW Al L 3dv*(x; 1)
=35 (R (6 £, t6) J¥(x) T) +53 j Re(x; £, () @1)

4. SPACE AND TIME DISCRETIZED FORMULATION FOR
PLANE FRAME STRUCTURES

4.1. Spatial discretization

In the following, for simplicity, we will assume having vanishing displacements on TI',. Finite
elements with two nodes will be considered, with three degrees of freedom in each node (Figure 1),
with linear shape functions for the ‘extensional’ degrees of freedom ry and r; and with cubic shape
functions for the ‘bending’ degrees of freedom rj, ry, rs, rg.

The shape functions n; (i = 1,. . ., 6) relevant to the degrees of freedom 1,. . . , 6 are, respect-
ively,

ni(x)=1-x/1
ny(x) = x/1
ny(x) =1 = 3x?/1> + 2x3/1° (42)

ng(x) = l(x/l — 2x*/1* — x3/1%)
ns(x) = 3x%/1* — 2x3/1?
ne(x) = 1(x3/1> — x*/1?)

In the following we will suppose for simplicity that each element has constant cross-section (ie. 4°¢
and J° independent of x) and homogeneous material (ie. R® = Re(¢, 1)).

Let u®(x; t) be the displacement vector, in local co-ordinates, of an internal point x of the finite
element e, whose u° is the displacement component along axis x and v° is the component along

axis y:
ut(x; 1) = [:] @)
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[
w o

Figure 1. Finite elements spatial discretization of a plane frame

Collecting the shape functions ny(x), n2(x) into the vector n: and the functions ns(x),. . ., ne(x)
into the vector n¢, one can express the displacement vector as a function of the nodal degrees of
freedom ry,. .., r¢ as follows:

nT 0T [l e s o
u (x; t) = [OT nzT] I:rf’} = N (x) r (t) (44)
where
c=0r
(45)
0= [r5 rs r5 rel”
Denoting with a{t) = [a; a2 ... «,,]7 the vector of the degrees of freedom of the assembled
structure, with respect to the global reference system, one obtains : ;
ri(t) = Afa(t); ro(t) = Ajalt) (46)
r'(t) = A%a(t) 47
where ‘
Ae
A€ = [ :] = C°T* (48)
A;

is the product between the Boole’s connectivity matrix C* and the co-ordinate transformation
matrix T¢.

4.2. Time discretization

The vector a(z) of the degrees of freedom of the assembled structure is now written as a function
of time degrees of freedom Bp=[f; B2 - .. Bn]T through shape functions collected into the
matrix M(t), with teT

o m; B:

alt)=| : |= | 2 [=M(@OB {49)
ans m:‘s ﬂns

In every example of Section 5 all the spatial degrees of freedom a{t) (1 < i < ns) are discretized
with respect to time using the same shape functions, i.e.

m = - =m=m=[m ...m]" (50)

In this way the total number of degrees of freedom is N = ns-nt.
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4.3. Determination of fi

The vector @ may be obtained through the stationarity of the total potential energy

ne 1 le aﬁe 2 1 le aZﬁe
Fipeld, 6] = ‘; {Ejo Ré(tg, to) A® (?3?) dx + :—ZL R(ty, to)Je (6 ) dx
,' IC
—J. aepde-J ﬁ"(j‘dx} (51)
0 [}
It is possible to discretize @€ in the same way as u’, ie.
G° = N°(x)A%4&(r) (52

with & = d(a).
By substituting equation (52) into the functional (51), we have

n* [ dn° dnﬁ T
R(to, 1o) A°ALT ) dx )Ae
{5 o man ([ (e
n* e dzne dZne T
Re eAeT v v d e
+ 2wt [ (G orac)

n* i« ne l«
—&T{ Y AT j nsptdx + ¥ AT J nﬁqedx} (53)

e=1 o e=1 o

lpc [u ﬁ] -

[\ 1

The stationarity of (53) leads to the following systems of equations:

Ké="P (54)
where
K=Y ATkA® (55)
e=1
d e d e\T
o | Relto, to) A ( d"“) 0
ke = f x \dx gine /gt |43 (56)
? 0 Re(to, 1) J* = ( dx;)
. n¢ . i* e ﬁe
P=Y A° 20 dx (57)
egl J‘O ,:l’l q ]

and K is the stiffness matrix of the assembled structure. By substitution of p° and §° (equations (40)
and (41)) into the second member of equation (57) we obtain

62 e it t . azd € ;
—n (Re(z, (o4 T, f Re(, r)A‘f—““—”)
Ox e
o dx

n . {= ax2 58
:E/‘ L 8*v%(x; 1) 6*dve(x; 1) (58)
ng [ Ré(t, 15) J¢ T + f Re(t, T )JCT

On integration by parts of equation (58), taking into account interelement compatibility and the
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imposed vanishing boundary constraint, we have

e € . t ad e ;
o <R“(t, (o) e 250 +J Re(z, 1) ac 220 ”)
J0x ¢ d

L ] dx . dx
P=) AT 0 59
egl L d*n¢ Re(t, 1) J° 32vf(x; £) N ¢ Reb(t _C)Jeazdve(x; 1) x (59)
dx? »0 dx? W ’ ox?
which transforms, taking into account equations (44), (47).and (49), into
dne (dnt\"
y o | R0, t0) A5 <E“;> 0
— eT e
?_eZ:lA J‘O 0 Re(t [)Jed_zﬂfe’_ .d__z_n_i ! dx A
027077 dx? \ dx?
Re(t’ tO) Jr Re(ta ‘[) }
x | ————— M(to) + — dM@) |B =
[Re(to, o) N | R, to)
— Z AeTkeAeRen — Hﬁ (60)
e=1
where ,
R°(t, to) J ‘ R4, 7)
= ————M(to) + — > —dM(z (61)
R*(to, to) (to) o R(to, to) )

4.4. Discretized functional

Now it is possible to rewrite the extended energy functional (39) in a discretized form by using
the spatial and time approximation introduced in Sections 4.1 and 4.2 and the calculation of

Section 4.3:
5061 = 56" U HTK"‘Hdr}B - ﬁ“ HK"! fdr} _lrLe-pe @)
where

H'K " 'Hdg gzj H'K ™ 'fdt (63)

to

ne¢ e ’
f=)% AeTj NeTp?dx; L =J

e=1 [0} o

and p* = [p° ¢°1".
The minimum of F[ ] is reached when B is the solution of the linear system:

Lp=¢ (64)
L is the ‘extended stiffness matrix’ and g is the «extended vector of the equivalent nodal forces’.
A flow-chart for the computer calculation of L and g is given in Figure 2.
Remark. Let us consider a non-singular linear equations system:
. Bx = b ' (65)

where B denotes a non-symmetric and non-definite real matrix Nx N and beR". We can
substitute the problem (65) with the ‘normal equation’ as in the least square method:

B'Bx = B'b (66)
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START

lCompute elastic stiffness matrixﬂ

I Compute invers matrix K“]

LChoice of the number n_of Gauss's points for external integratio;l
1
[ Choice of coord. t, and weights WE , of Gauss's points (ext. integ) 1<i<n |

i
li=o L= 0; £=0]

E=i+1;e=lo;ﬂ=0: 1=0]

e =e¢ + 1
« _R(t,,
R = ?(Li) M(t o)
R'(to.ty)
1
'Ehoice of the number n, of Gauss's points for internal integrationl
i

LChoice of coord. t, and weights WI, of Gauss's points (int. integ.) ISan:l

. “(t,, dM
AR = mliii_tl_)_

i = : R'=R'+AR"
R(to.t,) ldt Je =t

G

No

ry oT e o_a& Ym;_ «T T -
[E=A"KAR; £=4N 3

[E=H+H" =1 +1°]

AL-H K 'HWE,; Ag=H K ' fVE|

[L=L+aL; g=g+4g|

Figure 2. Flow chart for the calculation of matrix L and vector 4

Thus the original problem (65) is replaced by the second one whose matrix is symmetric and

semi-definite. Problem (66) is equivalent to the convex quadratic functional minimization.
Observing problem (66) it results clear that the main drawback of the least square method is the

possible deterioration of the conditioning index which can make the solution sensitive to

roundoff errors. Often this drawback can be overcome by substituting problem (65) not with the

T
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second one, but with the following;
B'SBx = BTSh (67)

where S is a N x N symmetric and positive-definite matrix.'*

With a suitable choice of S we can improve the conditioning of the matrix B'B. The matrix
S can be considered as a ‘scaling’ (or ‘preconditioning’) matrix. It is evident that the structure of
_ system (64) is of the same kind as system (67), where the preconditioning matrix is represented by
K~ ! which, as shown in Example d of the following section, results to be a good choice.

5. EXAMPLES

Here we introduce four examples of calculation of the structural effects of creep. For every
example we use both the hereditary Kelvin—Voigt model*~!¢ and the mixed CEB 78 model,!’
The linear viscoelastic constitutive law (1)—(2) may be specialized for the mono-axial case as

follows:

a(t, to) = e(to) R(1, to) + J- R{t, 1) de(7) (68)

t

e(t, to) = a(to) ®(t, to) + J ®(t, 1) do(7) (69)

fo

where
R(t, 1) = relaxation function
®(t, 1) = creep function.

For the Kelvin—Voigt model the creep function ® and the relaxation function R are
£y

a(t) wﬂ)

L

| 1

Rt,7)=R(t — 1) = E, — EoEjEl (1 — ¢~ (Eo+Ena—om)
=FE, +(E; ~ E )e ¢ /T (70)
Ot )= —1)= ELO + Eil(l — e E1@-am)
-7 7312 ('E}S * Izlj.f) em o (1)
where
Eofy . w_ M. pe_ M -
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For the CEB’78 model we have

1 ¢asltn) 1 1 ~ ~
‘D(t,r)—Ec(r)+ Eoae —Ec(_t)'*'Eczs‘[‘Ba(T)+¢dﬂd(t D)+ ¢l Bet) — Be(m)]]  (73)

where
1/E (1) is the initial elastic deformation (for a unit stress)
B.(t)/E.28 ©is the partially irreversible rapid initial deformation of the first day
Pafa(t — 7)/E;c28 is the recoverable part of the delayed deformation ageing independent

He[Be(t) — Be(t)1/Ec2s is the irreversible delayed deformation ageing dependent (¢; = d¢19r2
in Appendix D of Reference 17)

The analytical expressions of various parameters may be found in Appendix D-of Reference 17, as
functions of the relative humidity RH and of the effective thickness ho. The corresponding
analytical formulation of the relaxation function is instead unknown to the authors.

In all the examples exponential time shape functions are used for the Kelvin—Voigt model:

m' =[1,e ", e ¥, .. ] : (74)

These shape functions proved as being the most suitable for the creep kernel with respect to
polynomial or damped polynomial functions. The value of t* is assumed in the range T*-t*.
For the CEB’78 model logarithmic time shape functions are used:

m' =1, Int, (nt?...] (75)

that fit well the phenomenon on the entire field, with the exception of the rapidly increasing first
day deformation. '

For each example, significant displacements and/or stresses are plotted versus time, for the
three intervals 28—100, 28—1000, 28-10000 d, and for 1, 2, 3 time degrees of freedom.

The time shape functions are defined within the entire interval T. In each diagram both the
exact solution and the percentage error are also plotted. The exact solution is known in analytical
form for the Kelvin—Voigt kernel and is obtained numerically for the CEB’78 kernel through the
so-called step-by-step general method'” (Examples a, b and c) or through program Abaqus'®
(Example d). For all diagrams the time axis is plotted using a logarithmic scale.

Examples a and b deal with the problem of homogeneous structures on elastic supports;
Example ¢ deals with homogeneous structures subjected to a modification of restraints and
Example d deals with non-homogeneous structures. In all examples, integrations are made with
the Gauss method using 20 Gauss points.

Remark. The asymptotic character of the viscoelastic response over large time interval justifies
the above choice of the damped exponential (74) or logarithmic (75) shape functions which appear
more suitable for good approximation of the structural behaviour even in the presence of a small
number of degrees of freedom. ‘

Polynomial shape functions can also be usefully used, devoting however particular attention to
the wideness of the time interval which has to be suitably reduced in order to obtain, under the
same number of degrees of freedom, the same kind of accuracy. This is easily confirmed by the
plots of Figure 3 of Example a.

A wider discussion on the choice of the shape functions and of the number of degrees of
freedom and a comparison of the relevant levels of accuracy obtained will play a fundamental role
in a paper {Part II) in progress,'® dealing with more complex 2-D and 3-D numerical applica-
tions.




THEORETICAL RESULTS AND FIRST CALCULATIONS 49

()
(e |
1.6
1 L+
1.4 o
I
1.2 /,
] /
1.0 /
9.8
100 1000 t [days] 10200
34
2.0
1.8
_ N
\\\
°.e ™
\ ]
1.0 \
I NA
-2.0
100 1000 t tecee
l 1 1 I l l l I 1 1 q K = GEO/L‘Y’ ——a—e—e—  exact solution
—— 3 time intervals
wﬂ Eo/E = 2
L K L 71 /(Eg+E,)= 60 days €% = percentual error
b - - .
t = 60 days

Figure 3. Example a: Beam on elastic support—Kelvin-Voigt. Use of polynomial shape functions applied on three time
subintervals

Example a. The structure is a beam on rigid end supports, with an elastic support in the
middle; the beam is homogeneous and has a constant cross-section. The uniformly distributed
load is applied at time ¢, = 28 days and remains constant.

In Figures 4 and 5, the ratio between the displacement f(¢) of the middle section at time ¢ and
the initial elastic displacement f(zo) at time ¢, is plotted, both for the Kelvin—Voigt and the
CEB’78 viscous kernel.
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Figure 4. Example a: Beam on elastic support—Kelvin—Voigt

The diagrams show that the presented method allows a good interpretation of the viscoelastic
behaviour of the structure. In the range 1,—10 000 the asymptotic final displacement is obtained
with good accuracy even using one degree of freedom in time. With three degrees of freedom the
solution is satisfactory within the entire range (the error is less than 3 per cent).
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Figure 5. Example a: Beam on elastic support~CEB’78\

In Figure 3 the ratio f(t)/f (to) is plotted in the range t,—10 000 for the Kelvin-Voigt kernel only.
Here the integration interval was subdivided into three subintervals: 28-100, 100-300,
300-10000 d. For each subinterval the proposed method was applied by using just a degree of
freedom, i.e. by employing a linear time shape function with known initial value given by the end
value of the previous interval. The percentage error is almost everywhere less than 2 per cent.




52 A. CARINIL, P. GELFI AND E. MARCHINA

Example b. The same structure of Example a is here subjected to the constant displacement

A of the spring end, applied at time to = 28 d.
In Figures 6 and 7 the ratio between the bending moment in the central section M(t) at time
t and the corresponding initial elastic value M(t,) is plotted, both for the Kelvin—Voigt and the

CEB’78 viscous kernel.
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Figure 6. Example b: Beam on elastic support-——Kelvin—Voigt
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Figure 7. Example b: Beam on elastic support—CEB’78

Also in this example the proposed method allows a good interpretation of the viscoelastic
behaviour of the structure. Errors are slightly greater than those of Example a, since the bending
moment is proportional to the second derivative of the displacement and therefore is more
sensitive to the approximation of the calculation. With three degrees of freedom in time the
solution is satisfactory on the entire range 1,—10000 anyway.
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Example c. The structure consists of a two span continuous beam that is built introducing
solidarity between two independent spans immediately after they have been subjected to load g at
time t,.

In Figures 8 and 9 the ratio between the bending moment at the mid support M(t) at time ¢ and
the corresponding value gi?/8 for the classic elastic continuous beam is plotted. The percentage
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Figure 8. Example ¢: Beam subjected to a modification of restraint—Kelvin-Voigt
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error has no meaning in this case for times near t, = 28 d since the exact value tends to zero and

therefore the percentage error tends to infinity.

The non-dimensional diagrams of the bending moment show that the solution is satisfactory
within the entire range, adopting three degrees of freedom.
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Example d. The structure (Figure 10) is typical of a cable stayed bridge. The girder and the
piers are made of concrete with geometrical and rheological properties constant along the axis;
stays are made of steel. The uniform load q is applied on the girder at time t, and remains
constant in time.

The structure is discretized with seven elements having the characteristics of Figure 10. The
reference solution is obtained with the program Abaqus.'® In Figures 11 and 12 the diagram of
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Figure 10. Example d: Cable-stayed bridge
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Figure 11. Example d: Cable-stayed bridge—Kelvin-Voigt

the ratios between values at time ¢ and initial elastic values at time t, for the deflection, for the
bending moment and for the axial force at midspan are plotted.
Figure 11 refers to the Kelvin—Voigt rheological model and Figure 12 to the CEB’78 one.
In Figure 13 the importance of the choice of the parameter ¢* for the shape functions of the
Kelvin model is emphasized, particularly when few degrees of freedom in time are used.
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Figure 12. Example d: Cable-stayed bridge—CEB'78

All obtained results are satisfactory for displacements (errors are less than 5 per cent with three
degrees of freedom) as well as for internal forces (errors are less than 10 per cent with three degrees
of freedom).

The conditioning indexes of the coefficient matrices obtained both with the proposed method
and with the least square method are compared, using the same spatial and time discretization.
The results are summarized in Table L.
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Figure 13. Example d: Cable-stayed bridge—Kelvin-Voigt: weight of parameter ¢*

Table I. Conditioning indexes of the coefficient matrices

Conditioning index?*® (COND)

No. of
time Least square Extended functional
degrees
T(days) of freedom  Kelvin—Voigt CEB’78 Kelvin-Voigt CEB’78
1 1-555 x 107 1-282 x 107 3635 x 10° 3079 x 103
28-100 2 7-389 x 108 6852 x 10° 2118 x 10° 6056 x 10°
3 2705 x 10° 3205x10'' 2:328-x 107 4-108 x 10*°
1 5944 x 10° 4376 x 10° 2248 x 10° 1-887 x 10°
28-1000 2 2195 x 10® 7291 x 10'° 1051 x 10° 2:502 x 108
3 1715 x 10'® 2261 x 10'' 4932 x 10° 4360 x 10°
1 8891 x 10° 2:304 x 10¢ 2:064 x 103 1313 x 103
28-10000 2:695 x 10° 1744 x 10'°  1-001 x 10° 5913 x 10°

[FS 3N O]

5796 x 1012 2952 x 10'2 8667 x 107 1-206 x 10'°




60 A. CARINI, P. GELFI AND E. MARCHINA

As a reference, the conditioning index for the elastic stiffness matrix, obtained with the
instantaneous Young modulus at time to, is 4-8180 x 10°. All indexes are calculated with the
program Matlab.2° _

From Table I it is evident that the matrices obtained through the extended functional are better
conditioned than those obtained with the least square method. This fact is very important
numerically mostly in view of possible applications in the non-linear viscoelastic field.

6. CONCLUSIONS AND REMARKS

In the present paper the following has been presented:

1. an extremal formulation of the linear viscoelastic problem with general viscous kernel in
terms of displacements;

2. a corresponding discrete formulation in space and time for framed structures (using finite
element technique in space and Ritz technique in time);

3. numerical examples with reference to hereditary Kelvin—Voigt or mixed CEB’78 material
model.

It is worth making the following remarks:

(a) In contrast to all the known formulations in viscoelasticity, the here-presented formulation is
also valid for ageing materials (like concrete); it can also be easily extended to non-linear
viscoelasticity.

(b) As already emphasized in Reference 11, the ‘extended functional’ represents an energy. This
may both help in the comprehension of the method and serve as a tool for the construction of
the extended functional for other structural typologies. The easily derivable dual extended
functional in terms of stress is here omitted due to its less-frequent numerical use.

(c) From the given examples it appears that the conditioning index of the coefficient matrix of the

linear system (for one time degree of freedom) has the same order as that of the corresponding

elastic stiffness matrix. This result has been obtained assuming, for the auxiliary problem, the
instantaneous relaxation function R (X; to, to). Instead it is possible, for further improve-
ment of the conditioning matrix index, to choose instantaneous relaxation functions

Rim(x; £,7) with e T but # t, (for example 1 = t, + (t; — to)/2).

Good results of the method depends on the choice made for the Tonti’s ‘integrating
operator’ iK.!2 Unwise choices may lead to matrices with far worse conditioning indexes. This
is emphasized here for the choice of I = [ (identity operator, to which the least square method
corresponds). In any case the discretization leads to a linear equation system with a symmetric
and positive-definite coefficient matrix.

In all the examples given, the reliability and the accuracy of the method is evident. With three

time degrees of freedom, results are affected almost everywhere by errors less than 5 per cent.

The structural response, different from step-by-step methods, is given immediately on the

whole temporal range without the need of time integrations for the step-by-step solution to

proceed.

{e) It is possible to apply the present method on subintervals of the original integration time
range T, therefore using a step-by-step type procedure. This implies a reduced number of time
degrees of freedom over each subinterval and the construction of smaller matrices. Results in
this direction will be presented in a subsequent paper (Reference 19) of which an example is
presented in advance in Figure 3.

d

~—
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The proposed method requires the inversion of the elastic stiffness matrix in order to construct
the solving linear system. This may involve numerical problems when the system has many
degrees of freedom. It is worth noting that the matrices obtained are generally full. These
drawbacks may however be overcome through a method proposed by Ortiz.2! Studies by the
authors on this matter are at the moment in progress and will be presented in a subsequent
paper (Reference 22). o

In the context of the boundary integral equations (BIE) method, recent contributions for
elastic continua?3-2* permitted to attain, even under a BIE approach, a variational formula-
tion in space and time (using the convolution bilinear form in time) of linear hereditary
viscoelasticity and a mini-max formulation (using the Reiss bilinear form in time).?* It is also
possible to extend the present method to the boundary integral equations in linear viscoelas-
ticity with a general viscous kernel (not only a hereditary kernel) by obtaining an extension of
the mini-max formulation shown in Reference 25. A parallel work?¢ points out the results in
this direction.
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